

W20: Single Cell RNA-Sequencing Analysis using R

Giovanni Quinones Valdez, PhD November 25th – 27th, 2024

Workshop Structure

- This is an introductory-level scRNA-Seq workshop.
 - We will learn about the entire pipeline (from cells to data), but we won't expand too much on the details.
- Basic knowledge of R programming is expected.
- Students taking this workshop for credits will be assigned homework and a quiz on the last day (November 27th).

W20: Single Cell RNA-Sequencing Analysis using R

Day 1

- Concepts in scRNA-Seq
- Data Exploration
- Quality Control

Day 2

- Data processing
- Clustering and visualization
- Cell annotation

Day 3

- Pseudo-time
- Data integration
- Perspectives

What is RNA-Sequencing?

Sciencein3.com

- RNA sequencing is the "reading" of the RNA molecules present in the cell.
- We can observe where these molecules come from (genes); how many there are (gene expression) and what they look like (variants, RNA processing)

Bulk RNA-Seq vs single cell RNA-Seq

10X Genomics

Bulk RNA-Seq obscures cell-to-cell variability

Applications

- Study and identify cellular heterogeneity → cell populations within a tissue.
- Discover new cell types.
- Discover new markers and regulatory pathways.
- Reconstruct cellular lineage.

Experimental design and analysis

Adil et al (2021)

1. Methods for cell isolation

Hwang et al (2018)

2. RNA extraction and cDNA synthesis

10X Genomics Protocol

10X genomics

10X Genomics

- Barcode = cell's id (length = 16)
- UMI = RNA molecule's id (length = 10)
- Sample index = Sample's id (length = 8)
- P5/P7 = illumina adapters (necessary for sequencing)

 $unique\ oligos=4^n$

Unique Molecular Identifiers (UMI)

- They serve to remove PCR duplicates.
- They serve to remove in identifying sequencing errors.

3. Amplification

Khan academy

- The amount of RNA required for successful signal detection is 0.1-1.0 μg.
- The amount of RNA present in a single cell is 1-50 pg (2,000 to 1 million times less).
- Not all RNA molecules are captured.
 Droplet based technologies capture only around 5-8% of RNAs.
- The most-commonly used methods for amplification are:
 - PCR (Polymerase Chain Reaction)
 - IVT (In-vitro transcription)

10X Genomics

10X genomics

4. Sequencing

- Sequencing is performed on all the RNAs from all the cells together (multiplexing).
- Each molecule contains labels to indicate their origin (which cell) called barcodes.

5. Raw data processing

- Software like CellRanger and STARsolo automate this step
- RNA-Seq I and RNA-Seq II workshop covers this in more detail!

Nayak et al 2021

Read mapping

Cell ranger barcode and UMI processing

How many cells are there in my data?

Are these two different cells?

BC1: ATTCCGTTAGCCGACG (100k UMIs linked)

• BC2: ATTCCCTTAGCCGACG (30 UMIs linked)

Cell ranger will correct sequences with Hamming distance of 1

Cell ranger barcode and UMI processing

How many cells are there in my data?

A 'whitelist' is the list of selected cells use to filter reads downstream

Input files

filtered_feature_bc_matrix

— barcodes.tsv.gz

— features.tsv.gz

— matrix.mtx.gz

\$ gzip -cd filtered_feature_bc_matrix/features.tsv.gz ENSG00000141510 TP53 Gene

Expression

ENSG0000012048 BRCA1 Gene Expression ENSG00000139687 RB1 Gene Expression

F number of features

\$ gzip -cd filtered_feature_bc_matrices/barcodes.tsv.gz

AAACCCAAGGAGAGTA-1

AAACGCTTCAGCCCAG-1

AAAGAACAGACGACTG-1

B number of barcodes

Input files – matrix.mtx

%% MatrixMarket % % comments				
Rows_n	Cols_n	Entries		
Row_1	Col_1	M[1,1]		
Row_1	Col_2	M[1,2]		
Row_2	Col_3	M[2,3]		
	•••			
Row_n	Cols_n	M[n,n]		

For Seurat:

- Features (or Genes) are rows
- Barcodes (or Cells) are columns

Input files – matrix.mtx

%% MatrixMarket % % comments			
F	В	$\leq F \times B$	
1	1	12	
1	2	13	
2	1	3	
F	В	3	

For Seurat:

- Features (or Genes) are rows
- Barcodes (or Cells) are columns

Drop-outs

Jian et al 2022

6. Data Analysis

- Using the gene expression data in the form of raw UMI counts to identify cell populations.
- We will use Seurat to perform this analysis

UCLA QCBio
Collaboratory

Collaboratory

Quality control

- How many genes do we expect?
 - Too few → empty droplet or low quality of cells
 - Too many → duplets (or multiplets)
- Technical terms:
 - Feature count = number of genes
 - RNA count = number of UMIs

DePasquale et al 2019

Quality control

- Mitochondrial RNA
 - Due to very harsh conditions in tissue dissociation step.
 - Dying cells release their cytoplasmic contents.

Quality control

- Metrics
 - RNA count (or count depth)
 - Feature count (or gene count)
 - Mitochondria content
- Recommendations
 - Identify and discard outliers
 - Different samples may require different cutoffs.
- Make use or ERCC spike-ins
 - Does the measured expression match the input?

More cells more doublets

- For expression assays (RNA-seq), high troughput can capture up to 20,000 cells per library and up to 16 libraries.
- With higher number of cells, higher the rate of multiplets.

Multiplet Rate (%)	# of Cells Loaded	# of Cells Recovered
~0.4%	~825	~500
~0.8%	~1,650	~1,000
~1.6%	~3,300	~2,000
~2.4%	~4,950	~3,000
~3.2%	~6,600	~4,000
~4.0%	~8,250	~5,000
~4.8%	~9,900	~6,000
~5.6%	~11,550	~7,000
~6.4%	~13,200	~8,000
~7.2%	~14,850	~9,000
~8.0%	~16,500	~10,000

Kahoot time!

Go to www.kahoot.it

References

- Dong, X., Bacher, R. (2023). Analysis of Single-Cell RNA-seq Data. In: Fridley, B., Wang, X. (eds) Statistical Genomics.
 Methods in Molecular Biology, vol 2629. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2986-4_6
- Jian Hu, Amelia Schroeder, Kyle Coleman, Chixiang Chen, Benjamin J. Auerbach, Mingyao Li. Statistical and machine learning methods for spatially resolved transcriptomics with histology. *Computational and Structural Biotechnology Journal*. Volume 19. 2021. Pages 3829-3841. ISSN 2001-0370. https://doi.org/10.1016/j.csbj.2021.06.052.
- Jovic, D, Liang, X, Zeng, H, Lin, L, Xu, F, Luo, Y. Single-cell RNA sequencing technologies and applications: A brief overview. Clin Transl Med. 2022; 12:e694. https://doi.org/10.1002/ctm2.694
- Adil Asif, Kumar Vijay, Jan Arif Tasleem, Asger Mohammed. Single-Cell Transcriptomics: Current Methods and Challenges in Data Acquisition and Analysis. Frontiers in Neuroscience. 15. 2021.10.3389/fnins.2021.591122
- Hwang, B., Lee, J.H. & Bang, D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med 50, 1–14 (2018). https://doi.org/10.1038/s12276-018-0071-8

