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W20: Single Cell RNA-
Sequencing Analysis using R

Day 2
* Data processing

e Clustering and
visualization
e Cell annotation
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Normalization

* The goal is to make the data comparable across cells.

« The main assumption is that all cells have the same number of mMRNAs
* We use counts per million (CPM) as out new unit of expression.
 Forgenejin cellj: r; = gene UMI count, Rj = total UMI count, sf = scale

factor (1,000,000)
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Normalization

* Another technique is to down-sample UMIs until all cells have the same

count.

» Log transformation makes the data comparable (mean and variance) when

it spans multiple orders of magnitude.

* Proper normalization is still an ongoing question.
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Feature selection (HVG)
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Highly variable genes (HGV)

« Expression is less

reproducible at lower values.

« Variance (CV?) is modelled
as a function of mean
expression in order to
identify genes that ‘stand
out’ as highly variable
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Highly variable genes (HGV)

« Recommendations:
» Select 2k-5k most variable genes for downstream analysis.
* This is an arbitrary cutoff.
* Needs careful consideration.

« A good practice is to try different cutoffs and evaluate consistency of
results.

UCLA ocBio

Collaboratory



G1

G2

G3

G4

G5

Normalization - Scaling

C1 C2
40 4
10 1
20 2
30 3
0 0
Raw counts

c3

2

Gl

G2

G3

G4

G5

C1 C2
04 04
0.1 0.1
0.2 0.2
0.3 0.3
0.0 0.0
Normalized

UCLA ocBio

Collaboratory

c3

0.4

0.0

0.2

0.4

0.0

Gl

G2

G3

G4

G5

C1 C2 C3

0.0 0.0 0.0

0.33 0.33 -0.67

0.0 0.0 0.0

-0.03 -0.03 0.07

0.0 0.0 0.0

Scaled



Dimensionality reduction
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Dimensionality reduction:

* Our data is multi-dimensional (many
genes).

» Genes are expressed in “networks”.

* |t is not practical/feasible to analyze data
with so many dimensions.

* Instead, we can find a metagene which
represents all genes.

UCLA ocBio

Collaboratory

PCA

c1

c2

G1

0

34

G2

05

0

cn
0
0
0

Gn

0

0

Expression Matrix




Dimensionality reduction: PCA
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Limitations of PCA
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Jeremy Kalfon, 2019

By reducing the number of dimensions, it is inevitable to lose some of the connectivity of points in the
original structure (manifold)
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PCA and drop out

log_total_umi

4.00
.75
3.50

dimension 1
o
LT ]

L]
' | ||"" |
il (L

I:I 40 0. -15 . ﬁtl . 55 Q. EEI EI..E.E
2zaro fraction

(a) Technical replicates, PCA

Townes

« PC1 strongly correlates with the fraction of zeros.
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Feature selection improves PCA
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Dimensionality reduction: PCA

« How many PC’s should | select?
 Jackstraw
* Elbow plot

« Similarly, as Feature Selection, the number of PC’s should be
carefully evaluated.
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Cell-to-cell distances
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Finding neighboring cells (K-NN)

A
Identify and connect k nearest neighbors. )
The distance is defined as the Euclidian distance :,’
in the PC space.
Find “neighbor similarity” using the Jacard

Index.
J = N(C1)NN(C3) ’h
N(C1)UN(Cz)

Louvain algorithm = optimal modularity
* It maximizes the modularity based on the .
weight of the edges L

UCLA QcBio Xu et al (2015)
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Clustering
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Uniform Manifold Approximation and
Projection (UMAP)

* Also a dimensionality reduction
technique.

« Used predominantly for visualization.

* [t aims to capture the manifold
(topology/shape/structure) of the data
organization in higher dimensions.

* It embeds the neighborhood of points
to not lose significant connectivity. € M. Mirkes 2011

UCLA ocBio

Collaboratory

21



Uniform Manifold Approximation and Projection
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Identification of marker genes

« Which genes give identity to each cluster?

« Marker genes are genes that are differentially expressed in one
cell population (or cell type) compared to all the rest.

« Seurat performs DGE using the Wilcox Rank Sum test.

What is a “differentially-
expressed” gene?
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Identification of marker genes

« Which genes give identity to each cluster?

« Marker genes are genes that are differentially expressed in one cell
population (or cell type) compared to all the rest.

» Seurat performs DGE using the Wilcox Rank Sum test.
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ChatGPT 4 ~

Statistical graph of cell markers - ]
; given markers IL7R, CCR7 from a peripheral blood sample (human), what is the most likelhy cell
Key Word: CCR7 type?

ChatGPT
Based on the expression of the markers ILTR and CCR7 from a human peripheral blood sample,
the most likely cell type would be naive T cells. Specifically, these markers are often associated

with naive CD4+ and CD8+ T cells. Here's a bit more detail:

« IL7R (CD127): This interleukin-7 receptor alpha chain is critical for the survival and

PanglaoDB.se

development of T cells. It is prominently expres: on naive T cells and memory T cells but is

typically low or absent on regulatory T cells (Tregs) and most differentiated effector T cells.

f
et A i « CCRT: The C-C chemokine receptor type 7 is involved in homing cells to lymph nodes through

Gene  Description Type No.samples  No. cell clusters its ligands CCL19 and CCL21. CCRT is highly expressed on naive T cells and central memor
IL7R interleukin 7 receptor protein-coding gene 7m 450 cells, facilitating their migration to secondary lymphoid tissues.
CCR7  C-C motif chemokine receptor 7 protein-coding gene 91 237
The co-expression of ILTR and CCRT indicates a naive T cell phenotype, suggesting these cells
Barplot of cell clusters (Y-axis) and cell types (X-axis) where the gene is expressed. are capable of responding to new antigens and maintaining long-term immune surveillance
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Derive cell-
cluster marker
from a cell
type
hierarchical
model

Machine-Learning
based approaches to
classify cell clusters
and overcome batch

variability

Marker gene annotation

A  Marker Gene Database-based
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« Normalization can dramatically change the shape of the distribution
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(a) UMI counts

Check:
* Sina (2021)
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Seurat’'s SCTransform

Load data and create Seurat object

pbmc_data <- Readl@X(data.dir = "../data/pbmc3k/filtered_gene_bc_matrices/hgl9/")
pbmc <- CreateSeuratObject(counts = pbmc_data)

Apply sctransform normalization

» Note that this single command replaces NormalizeData() , ScaleData() ,and FindVariableFeatures() .
¢ Transformed data will be available in the SCT assay, which is set as the default after running sctransform
e During normalization, we can also remove confounding sources of variation, for example, mitochondrial mapping percentage

# store mitochondrial percentage in object meta data
pbmc <- PercentageFeatureSet(pbmc, pattern = "“MT-", col.name = "percent.mt")

# run sctransform
pbmc <- SCTransform(pbmc, vars.to.regress = "percent.mt", verbose = FALSE)

https://satijalab.org/seurat/articles/sctransform_vignette.html
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SCTransform normalization

Negative Binomial modelling

* A NB GLM model is fit for every
gene.

* The Pearson residuals is the
difference between the modelled

Pearson residual’s and observed value

* This substitutes the scaled and log
normalized value

log(E(x;)) = po + p1log;, m,

Xij=Hij
Zij = s

Gij

Mij = exp (Po, + p1, log,q m;),

W
ij
Gij = Mij + 9—’_,
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Further considerations

» scDeeds = single-cell dubious embeddings detector

» https://github.com/JSB-UCLA/scDEED

» ClusterDE = The R package ClusterDE is a post-
clustering DE method for controlling the false

discovery rate (FDR)

e https:/Igithub.com/JSB-UCLA/ClusterDE

The Junction of
Statistics and Biology

» scDesign3 = The R package scDesign3 is an all-in- UNIVERSITY OF CALIFORNIA, LOS ANGELES
one single-cell data simulation tool

» https://qithub.com/JSB-UCLA/scDesign3
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