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W20: Single Cell RNA-
Sequencing Analysis using R

Day 2
• Data processing
• Clustering and 

visualization
• Cell annotation



Data analysis
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Kisilev et al 2019



Normalization
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Normalization
• The goal is to make the data comparable across cells.

• The main assumption is that all cells have the same number of mRNAs 

• We use counts per million (CPM) as out new unit of expression.

• For gene i in cell j: rij = gene UMI count, Rj = total UMI count, sf = scale 

factor (1,000,000)

𝐶𝑃𝑀௜௝ ൌ
𝑟௜௝
𝑅௝
ൈ 𝑠𝑓
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Normalization
• Another technique is to down-sample UMIs until all cells have the same 

count. 

• Log transformation makes the data comparable (mean and variance) when 

it spans multiple orders of magnitude. 

• Proper normalization is still an ongoing question. 

log ሺ𝐶𝑃𝑀௜௝ ൅ 1ሻ
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Feature selection (HVG)
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Highly variable genes (HGV)
• Expression is less 

reproducible at lower values. 
• Variance (CV2) is modelled 

as a function of mean 
expression in order to 
identify genes that ‘stand 
out’ as highly variable

• CV ൌ ఙ
ఓ
ൌ ௌ௧ௗ.ௗ௘௩.

௠௘௔௡
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Kiselev 2019



Highly variable genes (HGV)
• Recommendations:

• Select 2k-5k most variable genes for downstream analysis.
• This is an arbitrary cutoff. 
• Needs careful consideration. 
• A good practice is to try different cutoffs and evaluate consistency of 

results. 
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Normalization  Scaling
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Dimensionality reduction
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Dimensionality reduction: PCA
• Our data is multi-dimensional (many 

genes). 
• Genes are expressed in “networks”. 
• It is not practical/feasible to analyze data 

with so many dimensions. 
• Instead, we can find a metagene which 

represents all genes. 

12



Dimensionality reduction: PCA
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Limitations of PCA
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Jeremy Kalfon, 2019

By reducing the number of dimensions, it is inevitable to lose some of the connectivity of points in the 
original structure (manifold)



PCA and drop out

• PC1 strongly correlates with the fraction of zeros. 
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Townes et al 2019



Feature selection improves PCA
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Kiselev 2019



Dimensionality reduction: PCA
• How many  PC’s should I select?

• Jackstraw 
• Elbow plot

• Similarly, as Feature Selection, the number of PC’s should be 
carefully evaluated.
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Cell-to-cell distances
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Finding neighboring cells (K-NN)
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Xu et al (2015)

• Identify and connect k nearest neighbors. 
• The distance is defined as the Euclidian distance 

in the PC space.
• Find “neighbor similarity” using the Jacard

Index. 

• 𝐽 ൌ ே ஼భ ∩ேሺ஼మሻ 
ே ஼భ ∪ேሺ஼మሻ 

• Louvain algorithm  optimal modularity
• It maximizes the modularity based on the 

weight of the edges



Clustering
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Uniform Manifold Approximation and 
Projection (UMAP)

• Also a dimensionality reduction 
technique. 

• Used predominantly for visualization. 
• It aims to capture the manifold 

(topology/shape/structure) of the data 
organization in higher dimensions. 

• It embeds the neighborhood of points 
to not lose significant connectivity. 
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E.M. Mirkes 2011



Uniform Manifold Approximation and Projection 
(UMAP)

• It aims to capture the manifold 

(topology/shape/structure) of the data 

organization in higher dimensions. 
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Identification of marker genes
• Which genes give identity to each cluster?
• Marker genes are genes that are differentially expressed in one 

cell population (or cell type) compared to all the rest. 
• Seurat performs DGE using the Wilcox Rank Sum test. 
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Kiselev 2019

What is a “differentially-
expressed” gene?



Identification of marker genes
• Which genes give identity to each cluster?
• Marker genes are genes that are differentially expressed in one cell 

population (or cell type) compared to all the rest. 
• Seurat performs DGE using the Wilcox Rank Sum test. 
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Marker gene 
annotation
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PanglaoDB.se



Marker gene annotation
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Pasquini et al, 2021

Derive cell-
cluster marker 

from a cell 
type 

hierarchical 
model

Correlate 
expression 

levels between 
query and 
annotated 

clusters

Machine-Learning 
based approaches to 
classify cell clusters 

and overcome batch 
variability



Normalization
• Normalization can dramatically change the shape of the distribution
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Townes et al (2019)

Check:
• Sina (2021)



Seurat’s SCTransform
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https://satijalab.org/seurat/articles/sctransform_vignette.html



SCTransform normalization
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Pearson residual’s

Negative Binomial modelling

Hafemeister 2019

• A NB GLM model is fit for every 
gene.

• The Pearson residuals is the 
difference between the modelled 
and observed value

• This substitutes the scaled and log 
normalized value



Further considerations
• scDeeds = single-cell dubious embeddings detector 

• https://github.com/JSB-UCLA/scDEED

• ClusterDE = The R package ClusterDE is a post-

clustering DE method for controlling the false 

discovery rate (FDR) 

• https://github.com/JSB-UCLA/ClusterDE

• scDesign3 = The R package scDesign3 is an all-in-

one single-cell data simulation tool

• https://github.com/JSB-UCLA/scDesign3
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